Счет в различных системах счисления

Сложение в системах счисления
Как мы складываем в десятичной системе счисления?
Давайте вспомним о том, как мы складываем числа уже привычным нам способом, в десятичной системе счисления.
Самое главное стоит понять разряды. Вспомните алфавит каждой СС и тогда вам станет легче.
Сложение в двоичной системе счисления
Сложение в двоичной системе ничем не отличается от сложения в десятичной системе. Главное помнить, алфавит содержит всего две цифры: 0 и 1. Поэтому когда мы складываем 1 + 1, то получаем 0, и увеличиваем число еще на 1 разряд. Посмотрите на пример выше:
- Начинаем складывать как и привыкли справа налево. 0 + 0 = 0, значит записываем 0. Переходим к следующему разряду.
- Складываем 1 + 1 и получаем 2, но 2 нет в двоичной системе счисления, а значит мы записываем 0, а 1 добавляем к следующему разряду.
- У нас получается в этом разряде три единицы складываем 1 + 1 + 1 = 3, этой цифры также быть не может. Значит 3 – 2 = 1. И 1 добавляем к следующему разряду.
- У нас вновь получается 1 + 1 = 2. Мы уже знаем, что 2 быть не может, значит записываем 0, а 1 добавляем к следующему разряду.
- Складывать больше нечего, значит в ответе получаем: 10100.
Один пример мы разобрали, второй решите самостоятельно:
Сложение в восьмеричной системе счисления
Так же как и в любых других системах счисления необходимо помнить Алфавит. Давайте попробуем сложить выражение.
- Все как обычно, начинаем складывать справа налево. 4 + 3 = 7.
- 5 + 4 = 9. Девяти быть не может, значит из 9 вычитаем 8, получаем 1. И еще 1 добавляем к следующему разряду.
- 3 + 7 + 1 = 11. Из 11 вычитаем 8, получаем 3. И единицу добавляем к следующему разряду.
- 6 + 1 = 7.
- Складывать далее нечего. Ответ: 7317.
А теперь проделайте сложение самостоятельно:
Сложение в шестнадцатеричной системе счисления
- Выполняем уже знакомые нам действия и не забываем про алфавит. 2 + 1 = 3.
- 5 + 9 = 14. Вспоминаем Алфавит: 14 = Е.
- С = 12. 12 + 8 = 20. Двадцати нет в шестнадцатеричной системе счисления. Значит из 20 вычитаем 16 и получаем 4. И единицу добавляем к следующему разряду.
- 1 + 1 = 2.
- Больше складывать нечего. Ответ: 24Е3.
Вычетание в системах счисления
Вычитание в десятичной системе счисления
Вспомним, как мы это делаем в десятичной системе счисления.
- Начинаем слева направо, от меньшего разряда к большему. 2 – 1 = 1.
- 1 – 0 = 1.
- 3 – 9 = ? Тройка меньше девяти, поэтому позаимствуем единицу из старшего разряда. 13 – 9 = 4.
- Из последнего разряда мы взяли единицу для предыдущего действия, поэтому 4 – 1 = 3.
- Ответ: 3411.
Вычитание в двоичной системе счисления
- Начинаем как обычно. 1 – 1 = 0.
- 1 – 0 = 1.
- От 0 отнять единицу нельзя. Поэтому заберем один разряд у старшего. 2 – 1 = 1.
- Ответ: 110.
А теперь решите самостоятельно:
Вычитание в восьмеричной системе счисления
- Ничего нового, главное помнить алфавит. 4 – 3 = 1.
- 5 – 0 = 5.
- От 3 отнять 7 мы сразу не можем, для этого нам необходимо заимствовать единицу у более старшего разряда. 11 – 7 = 4.
- Помним, что заимствовали единицу ранее, 6 – 1 = 5.
- Ответ: 5451.
Пример для самостоятельного решения:
Вычитание в шестнадцатеричной системе счисления
Возьмем предыдущий пример, и посмотрим каков будет результат в шестнадцатеричной системе. Такой же или другой?
- 4 – 3 = 1.
- 5 – 0 = 5.
- От 3 отнять 7 мы сразу не можем, для этого нам необходимо заимствовать единицу у более старшего разряда. 19 – 7 = 12. В шестнадцатеричной системе 12 = С.
- Помним, что заимствовали единицу ранее, 6 – 1 = 5
- Ответ: 5С51
Пример для самостоятельного решения:
Умножение в системах счисления
Умножение в десятичной системе счисления
Давайте запомним раз и навсегда, что умножение в любой системе счисления на единицу, всегда даст тоже самое число.
- Каждый разряд умножаем на единицу, как обычно справа налево, и получаем число 6748;
- 6748 умножаем на 8 и получаем число 53984;
- Проделываем операцию умножения 6748 на 3. Получаем число 20244;
- Складываем все 3 числа, по правилам. Получаем 2570988;
- Ответ: 2570988.
Умножение в двоичной системе счисления
В двоичной системе умножать очень легко. Мы всегда умножаем либо на 0, либо на единицу. Главное, это внимательно складывать. Давайте попробуем.
- 1101 умножаем на единицу, как обычно справа налево, и получаем число 1101;
- Проделываем эту операцию еще 2 раза;
- Складываем все 3 числа внимательно, помним про алфавит, не забывая про лесенку;
- Ответ: 1011011.
Пример для самостоятельного решения:
Умножение в восьмеричной системе счисления
Есть небольшой лайфхак, как считать в восьмеричной системе. Давайте рассмотрим на примере:
- 5 х 4 = 20. А 20 = 2 х 8 + 4. Остаток от деления записываем в число – это будет 4, а 2 держим в уме. Проделываем эту процедуру справа налево и получаем число 40234;
- При умножении на 0, получаем четыре 0;
- При умножении на 7, у нас получается число 55164;
- Теперь складываем числа и получаем – 5556634;
- Ответ: 5556634.
Пример для самостоятельного решения:
Умножение в шестнадцатеричной системе счисления
Все как обычно, главное вспомните алфавит. Буквенные цифры, для удобства переводите в привычную для себя систему счисления, как умножите, переводите обратно в буквенное значение.
Давайте для наглядности разберем умножение на 5 числа 20А4.
- 5 х 4 = 20. А 20 = 16 + 4. Остаток от деления записываем в число – это будет 4, а 1 держим в уме.
- А х 5 + 1 = 10 х 5 + 1 = 51. 51 = 16 х 3 + 3. Остаток от деления записываем в число – это будет 3, а 3 держим в уме.
- При умножении на 0, получаем 0 + 3 = 3;
- 2 х 5 = 10 = А; В итоге у нас получается А334; Проделываем эту процедуру с двумя другими числами;
- Помним правило умножения на 1;
- При умножении на В, у нас получается число 1670С;
- Теперь складываем числа и получаем – 169В974;
- Ответ: 169В974.
Пример для самостоятельного решения:
Деление в системах счисления
С делением все так же, как и в привычной нам десятичной системе счисления.
Деление в двоичной системе счисления
В двоично системе счисления делить гораздо приятней, чем в десятичной системе. Потому что в десятичной надо угадывать числа и постоянно умножать, чтобы у нас получилось нужное значение. А в двоичной системе на какое еще число кроме единицы необходимо умножить, чтобы получить нужное значение? Правильно, ни на какое.
- Сколько в 101 получится 11? Правильно, 1. 101 – 11 = 10;
- 100 / 11? Так же 1 раз 11 поместится в 100. 100 – 11 = 1;
- 11 / 11 = 1, в остатке 0;
- Ответ: 111.
Деление в восьмеричной системе счисления
- 46 меньше 53, значит делить будем 462. Надо угадать сколько раз число 53 поместиться? Угадываем 7 и записываем;
- 53 / 53 = 1. Записываем к ответу, в остатке у нас 0;
- Последний 0 мы так же записываем к ответу, так как делить больше нечего;
- Ответ: 710.
Деление в шестнадцатеричной системе счисления
Осталось самое страшное – это научиться делить в шестнадцатеричной системе. Да прибудет с нами сила.

- 4С мы должны поделить на 2В. Методом подбора определяем что умножить можем только 1 раз. 4С – 2В = 21 и единицу записываем в ответ;
- Также методом подбора определяем, что 2В, мы можем умножить на С. 219 – 204 = 15;
- Опять, методом подбора определяем, что это 8. 158 – 158 = 0, решение закончено;
- Ответ: 1С8.
Осталось самое страшное – это научиться делить в шестнадцатеричной системе. Да прибудет с нами сила.
- 4С мы должны поделить на 2В. Методом подбора определяем что умножить можем только 1 раз. 4С – 2В = 21 и единицу записываем в ответ;
- Также методом подбора определяем, что 2В, мы можем умножить на С. 219 – 204 = 15;
- Опять, методом подбора определяем, что это 8. 158 – 158 = 0, решение закончено;
- Ответ: 1С8.